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There are two positive, absolute constants ¢; and ¢, so that the volume of the
difference set of the d-dimensional Euclidean ball B¢ and an inscribed polytope with
n vertices is larger than

¢y dvoly(Bf)n=2/d=D

for n=(c, d)(d_ D2 © 1997 Academic Press

We study here the approximation of a convex body in R by a polytope
with at most n vertices. There are many means to measure the approxima-
tion, the two most common are the Hausdorff distance or the symmetric
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difference metric. The Hausdorff distance between two convex bodies K
and C is

dy(K, C)=max{max min |x — y|, max min Hx yiI}
xeC yek yeK xeC

where | x| is the Euclidean norm of x. The symmetric difference metric is
the volume of the difference set.

d(K, C)=vol (KA C).

Bronshtein and Ivanov [1] and Dudley [1, 2] showed that for every
convex body K in R? there is a constant ¢ =c(K, d) such that for every n
there is a polytope P, with at most n vertices and

du(K, P,) <en 2=,

This can be used to show the same estimate for the symmetric difference
metric. Gruber and Kenderov [9] showed that the inverse inequality holds
if K has a C*-boundary:

dy(K, P,) = cn=2d=1),

Macbeath [10] showed that the approximation of a convex body is always
better than that of the Euclidean ball. Gruber [ 8] obtained an asymptotic
formula. If a convex body K in R? has a C*boundary with everywhere
positive curvature, then we have

inf{d4(K, P,)| P, = K and P, has at most n vertices}

1 1
~3 del,_, f r(x) 4D du(x) <>
n

0K

2/(d—1)

where del,_, is a constant that is connected with triangulations. In [5]
and [6], it was shown constructively that for all dimensions d, all convex
bodies K, and all n>2 there is a polytope P, with n vertices that is
contained in K such that

vol,(K) —vol,(P,) < ¢, dvol ,(K)n=2d=1

where ¢, is a numerical constant. This estimate can also be derived from
[1] and [2, 3]. So the question was whether the factor d was necessary, or,
in other words, what is the order of magnitude of the constant del,. The
result in this paper shows that there are absolute positive constants ¢; and
¢, with

Cq \deld\
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In fact, we have

2/ vol,_,(6Bg) \~
deldl<3<V°1()>

7 VOldfl(Bg l)

this follows from estimate (1) below.

In this paper we want to show that there is a universal constant ¢ >0
such that the volume of the difference set of the d-dimensional Euclidean
ball and an inscribed polytope with n vertices is larger than

cdvol,(B)n==",

We want to reduce the computation of the volume of the difference set
to that of the following set: The set between a d — I-dimensional face of
the polytope and the boundary of the sphere. Intuitively it is clear that
the faces should be simplices and that the polytope should have rather
regular features. This leads us to the assumption that the volume of the
set between a d — 1-dimensional face of the polytope and the boundary of
the sphere equals in average approximately the surface area of the face
times the height of the cap of the Euclidean ball that is determined by
that face.

There are two technical difficulties. The number of faces does not
necessarily correspond to the number of vertices. In fact, a heuristic
argument shows that the number of faces is of the order of the number of
vertices times d“?. Secondly, although we may assume that the faces are
simplices, we may not assume that they are regular or close to regular. This
is expressed in the following way. If F is a face and H the hyperplane
containing F then the distance of the centers of gravity of F and H n BY
may be large.

Hyperplanes are usually denoted by H and the closed halfspaces associated
with H by H* and H~. H(x, ¢) is the hyperplane that passes through x
and is orthogonal to £&.

The d — 1-dimensional faces of a polytope in R? are denoted by F;. The
hyperplanes containing F; are denoted by H;. H;" denotes the halfspace
containing P.

For a polytope P that is contained in B the height or width of BS N H ;-
is i, and the radius of B N H; is r;.

cg(M ) is the center of grav1ty of the set M.

[ 4, B] denotes the convex hull of the sets 4 and B. The radial projection
rp(M) of a set M in BY is

rp(M) = {£ 0B [0. 5] M+ ).
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THEOREM 1. There are two positive constants ¢, and ¢, so that we have
for all d, d=2, and all n, n>=(c,d)* V72, and all polytopes P, that are
contained in the Euclidean unit ball B¢ and have n vertices

vol ;(BE) —vol,(P,) = ¢, d vol ,(BS) n=2/4=1),

In particular we have by Theorem 1 that

vol,(B) = vol,(P,) > vol,(B)
2

ifn<(c,d)d—V72
LEmMA 2. (1) For all x, 0<x, there is a 0, 0 <0< 1, such that

0
I(x+1)=/2nx*""?exp <—x+12>.
X

e n_(dfl)/Z(ze)d/z

= <
F(@2)+1)~ de

(i1) vold(B‘zl)

The following lemma is due to Bronshtein and Ivanov [1] and Dudley
[2, 3].

LEMMA 3. For all dimensions d, d = 2, and all natural numbers n, n = 2d,
there is a polytope Q, that has n vertices and is contained in the Euclidean
ball B such that

16 / vol,_(9B4) \¥@— 1
Bd < d—1 2 > 72/(d71).
dH(Qnﬂ 2) 7 <U0[dl(Bgl) n

In particular, since a Q, which satisfies the hypothesis of Lemma 3
contains the Euclidean ball of radius 1 —d,(Q,,, BS), it follows that

ds(Q,, BY) <vol,(B5){1—(1—du(Q,, BY)}

16 / vol, _,(0Bd) \¥“=b  — \?
<Vold(B‘2{){l—<l_7<VOld’l(Bd2l)> n—2d 1))}
1 2
(1)

and

16 1 aBd 2/(d—1) d—1
{1 _7 <V\;(; - 1((de1))> n- 24 1)} vol, 1(83‘21) <vol, (00,).
d—1 2

(2)
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We have that
e

I'((d2)+1)

3 I'(d—1)2+1)
_d\/;z I'((d22)+1)

<d./mvol,_(B{™).

vol, ,(0B%)=dvol, (B =d

vol, (B3~ ")

Since d*“~ V<4 and (1 —1)?>1—dt we get from (1)

ds(Q,, BY) <(1—(1 =S mn =2 D)") vol ,(B3)

<% 7mdn=“"Yvol,(BI). (3)
Similarly we get from (2) that we have for n> (222r d)“~ "2
vol,_1(0Bg) <2 vol,_(00,). (4)

For the sake of completeness we include the proof of Lemma 3. The
arguments are from [1].

Proof. For every n there is a 0, >0 and a set {x,, .., x,} =3B so that
for all i # j we have
=0

[[x; —x;

i n

and so that for every x e dBg there is i such that
[x—x;| <0,.
We choose Q, to be the convex hull of {x, .., x,}. We have
du(Q,. B3) <30

If not, then there is x € 9B such that the Euclidean ball with radius 16?2
and center x and Q, have an empty intersection. By the theorem of
Hahn-Banach there is a hyperplane separating Q, and B%(x, 307). This
hyperplane cuts off a cap of height greater than 102. The point at the top
of this cap has a distance greater than 6, from all x;, i=1, ..., n. This can-
not be.

Now we estimate 6, from above. The caps

OBInH™ ((1-162) x;, x,) i=1,..,n
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have disjoint interiors. Therefore we get

vol, 1(0B3) = ), vol, (0B H™((1—3507) x;, x;))

i=1

>n(50, /1= 1500 vol, (BS~).

1«9 «92 <1 vol,_,(0B%) >'/(""”

2 \/ 16 " “\nvol, (BY )
For n=2d we get that 0n<ﬁ. Indeed, just consider the set {e,, .., e,
—ey, .., —ey}. Thus it follows

f <1 vol, laBd)>1/<d1>
nvol, (B¢~

|0 (1 a0l el
2 7 \nvol,_(B¢~1)

We obtain

and thus

LemmaA 4. (i) For k=0,1,2,...and d=1,2, ... we have

0 (87 on((5 ) )5 (9

(i) For i # j we have
d 2 F(d/2)
fwg y"”‘“’""(‘(,zl y"> >dy‘4<d+1>(d—1)!'

Proof. This is an easy consequence of Fubini theorem with the change
of variables x,=>%_ |, y,and x;=y,, i=1,..,d—1. |

For the following lemma compare also [12].

LemMA 5. Let x, ..., X, be points on the Euclidean sphere of radius 1, S
the simplex [x,,..,x,], and rp(S) the radial projection of S, ie., the
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spherical simplex of the points x,, ..., x,. Let X be the matrix whose columns
are the vectors x,, ..., x;. Then we have

2
vol,(19(S) = s et )] | , XUy XXy) dy
and
1
vol,([0, 10(S)1) = Fr iy Idet ) de exp( — Y X'X) dy.
Proof. We have
o n_u'/Z
vollBa) = riam+ 1)

and
f e 121 dz = g2,
Rd

Therefore we get

1

— —l=1? g5
r((d/2)+1)f{z=t§|ie$andzeﬂ%§+}e :

vol, ([0, rp(S)]) =
Using the substitution z = Xy we get the latter expression equals

1
—————|det(X S gy,
T T e )|jR,,+e L

LEMMA 6. Let X, ..., x, be points on the Euclidean sphere of radius 1, S
the simplex [ xy, ..., x,], and let ¥p(S) be the radial projection of the simplex
S. Let H be the hyperplane containing the simplex [x,, .., x;] and r the
radius of the d— 1-dimensional Euclidean ball H ~ BS. Then we have

d2
voly([0, rp(S)]) —vol,([0, S1) >Z(d—|—1)< ,; X

> vol, ([0, S])

and

vl ([0, rp(S)]) — vol, ([0, ST) = dﬁ( Hlix

2(d+1
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Proof. By Lemma 5 we have

vol, ([0, rp(S)]) —vol, ([0, ST)

|det(X)]

‘X' Xy)dy — .

1
==}?Z£§£§§f15|d6t(Xj|jRa exp( —

By Lemma 4(i) with £ =0 the last expression equals

1 Lo d 2
@ e[, {exp ”y)_exp<_<-z,yf>>}dy

i=

1
:W |det(X)]

(5 ) rm)fon((30) )

We use now the inequality 1+ ¢<e’ and get that the above expression is
greater than or equal to

R = {(E ) - fen(-(£5)) 0

det(0)] Y (1

i j=1

1
TT(dR)+1)

Since we have {x;, x;>=1 for i=1, ..,

above expression

d

1
TT(dR)+ 1)

|det(X)] Y, (1

i j=1

—Cxnx)) | el = () dy.

d, we get by Lemma 4(iii) for the

I(d)2)

PRSP

Zx

i=1

)

2
>vold1(S>. I

1
= 2(ds 1y et <

d./1—r? 1 &
:2(d+1)< H L X

171

LEMMA 7. Let A be a measurable subset of B% such that the center of
gravity of A is contained in a cap of height A, A<1. Then there is a cap C
of height 24 so that

2vol,(CnA)=wvol,(A).
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Proof. Let us consider BY with the origin situated at the “south pole”,
le. Bi={x=(&, .. )20} E+(E,—1)° 1} W.lg. assume that the
center of gravity of the set 4 is on the &, axis at the point (0, ..., 0, 4)
where 0 <4 < 1. Let a(¢) be the d — 1-dimensional Lebesgue measure of the
intersection of 4 with the hyperplane {x|&,=1}. Then vol,(4)= {3 a(t) dt
and 4= (1/vol,(A)) |3 ta(t) dt. Let C be the cap Bdn{x|fd<2A} We
obtain

ZVOI(I(Cr\A)=2f alt) dt
<24

—2vol (4)—2 f a(t) dt
=24

>2vol,(A4) — —a(t)dt— —a(t) dt

al4) j@u ® jf<zAA ®
=vol,(4). |

LemMMA 8. Let P, be a simplicial polytope with vertices x,, ..., x,, that are

elements of 0BS. Let F,;, j=1, .., m be the d— 1-dimensional faces of P,, H,
the hyperplane containing F,, h; the height of the cap Bj NH;, and r; the
radius of B~ H,. Let A" be the set of integers j so that

i <1<U01d1(apn) 1>2/(d1)
/=8 \wol,_,(0BY) 4n '

Then we have

1.7()[‘,1< U F> —vol, ,(OP,).

jenN

Proof. We put
Ni={jeN|x,eF} i=1,.,n

and

L (P L >W”
P =8 \vol,_,(0BY) 4n '
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Since h;< p we have that (J;. ,, F, is contained in B5(x,, 2/2p). U;c 1. F;
is a subset of the boundary of the convex set P, N BY(x,,2./2p). Thus we
get

VOlzlfl < U Fl) <VOl!A’*l(a(Pn mBg(xi9 2 vV 2)0)))
jet;

Since P, N BY(x;,2./2p) is a convex subset of the convex set BY(x;, 2/2p)
we get

1
vol,_ ( U F/> <(8p)“~""?vol,_,(0BY) <I vol,_(0P,).

jet n
Therefore we get

vl (U £ )=vele 1 (0 U F)

jen i=1 jet;

<Zvold1< U F><lvold (2P,). 1

i=1 jeN;

LEMMA 9. Let P, be a simplicial polytope with vertices x,, ..., x,, that are
elements of 0BS. Let F;, j=1, .., m be the d— 1-dimensional faces of P,, H,
the hyperplane containing F;, h; the height of the cap B" NH;, and r; the
radius of B§ N H,. Assume that we have for all j, j=1, ...,

h<S < U"ld—l(aBg)>WI) n- =D
7T UOldfl(Bgil)

and assume that
vol, _ 1(83‘2’) <2vwol,_ ,(0P,).

Let M be the set of integers j so that

22_1

222 V]

leg(F;) —cg(H, N BY)| >
Then we have

vold1< U F>< vol, ,(0P,).

je .
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Proof. We put

18 (3 20BN

VO](I* I(Bl217 !

16
7
76261\[ 2/(d—1) y —2/(d—1)

Since k; < 0 we have for all j, j=1,..,m

rjg\/%.

We have that cg(F;) is contained in a cap of height 2~ *r; of the d—1-
dimensional Euclidean ball H, n BY. By Lemma 7 there is a subset F; of F;
so that F; is contained in a cap of height 2~2'r; and

vol,_(F;)<2vol,_ ](Fj)

Thus the diameter of F/ is less than 2 °r;<,/260/512. The set of all integers
j such that x; eFj is denoted by .#;.. We have that (J jei/,,[F"j is a subset of

the boundary of the convex set P, n B%(x;,27°./20) and has a smaller
surface area than Bf(x;, 2’ \/270).

VOld—]< U F> <m>dlvold_,(03g)

et 512

\4d’;/ <51\£/> vol,_,(0P,).

Since d <29~ ' we get that the latter expression is smaller than

4 d—1 /
Jr <ﬁ> vol, ,(0P,) < 2n vol, ,(0P,) < é vol, ,(oP,).

n \128 32n

Therefore we get

old1< U Fn>=V01d1<U U F> S vol,_ 1< U F>

jeu i=1 jei i=1 JjeMi

<2)) vold1< U F> ivold (ar,). 1

i=1 e
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Proof of Theorem 1. We consider numbers of vertices n such that
n>(*2nrd)“= Y72 Let P, be a polytope with n vertices so that vol,(BS) —
vol,(P,) is minimal. Let Q, be a polytope with n vertices so that
d,(B4, Q,) is minimal. By Lemma 3 we have that for all j

1 (3008
) |

d (B <
H( 25 Qn) 7 VOI‘{,I(Bgil

We consider now the convex hull of P, and Q,,.

P=[P,, 0,]

P has at most 2n vertices. Its d — 1-dimensional faces are denoted by F|,
j=1,..,m. H; is the hyperplane containing F;, h; the height of the cap
BinH;, and r; the radius of B} nH, We may assume that P is
simplicial. We have that

16

hy<du(BL. 0,) <<

W>2/(d”n2/<ffl>
7 ) '

vol,_(B4~!
By the assumption on n we have that
h)<g  and rFW%- (5)
Also we have by (4) that
vol, (0B%)<2vol,_,(00,)<2vol, (oP).

We apply Lemmas 8 and 9 to P that has at most 2n vertices. Thus a factor
2 enters the estimates. Let .# be the set of integers j so that

2/(d—1) d 2/(d—1)
(ROl LYY t6 vl 08) 1) )
8 \vol,_,(0B3) 8n 777 \vol_ (B ")n
and
22|
|eg(F;) —cg(H, N BS)| <= T (7)
We have
1
Vold1< U Fj>>2V01,11(8P). (8)

je&
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We apply Lemma 6
vol,(B¢) —vol,(P,) = vol ,(BS) — vol ,(P)

> Z (vol, ([0, rp(F;)]) —vol ([0, F;1))

> )

je<zx

(1 —lleg(F))[?) vol,(F)).

By (5) we have r; <3 and get that the latter expression is greater than

1
) 3 (1= lleg(F, D2 voly 1 (F)).

je&
We have
leg(F)II? = (1 —h,)>+ |eg(F)) —cg(H, n BY)| .

By (7) we get for je &

2221 2
1= Jeg(F)|*> (1_hj)2_<rj>

=272 =27")2h;—h7)=2"""h,.
Therefore
d 1
Vold(Bz)—Vol(P)Zﬁ Y. h;vol, |(F)).
jee
By (6) we get that this expression is greater than

1 <Vold1(8P) 1 >2/(d”

27 . 1 F.
22" \vol,_,(0B%) 8n Y, vol, (F)),

je<

and by (8) this expression is greater than

1 <Vold (oP) 1

2/(d—1)
- 1, (0P
9\ vol,_,(6BY) 8n> volg—1(0P)

! 1
> 555 voly 1(0B5) n =2V =g dvol (B n =21
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