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There are two positive, absolute constants c1 and c2 so that the volume of the
difference set of the d-dimensional Euclidean ball Bd

2 and an inscribed polytope with
n vertices is larger than

c1 d vold (Bd
2) n&2�(d&1)

for n�(c2 d )(d&1)�2. � 1997 Academic Press

We study here the approximation of a convex body in Rd by a polytope
with at most n vertices. There are many means to measure the approxima-
tion, the two most common are the Hausdorff distance or the symmetric
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difference metric. The Hausdorff distance between two convex bodies K
and C is

dH(K, C)=max[max
x # C

min
y # K

&x& y&, max
y # K

min
x # C

&x& y&]

where &x& is the Euclidean norm of x. The symmetric difference metric is
the volume of the difference set.

dS(K, C)=vold (KqC).

Bronshtein and Ivanov [1] and Dudley [1, 2] showed that for every
convex body K in Rd there is a constant c=c(K, d ) such that for every n
there is a polytope Pn with at most n vertices and

dH(K, Pn)�cn&2�(d&1).

This can be used to show the same estimate for the symmetric difference
metric. Gruber and Kenderov [9] showed that the inverse inequality holds
if K has a C2-boundary:

dS(K, Pn)�cn&2�(d&1).

Macbeath [10] showed that the approximation of a convex body is always
better than that of the Euclidean ball. Gruber [8] obtained an asymptotic
formula. If a convex body K in Rd has a C 2-boundary with everywhere
positive curvature, then we have

inf[dS(K, Pn) | Pn /K and Pn has at most n vertices]

t
1
2

deld&1 |
�K

}(x)1�(d+1) d+(x) \1
n+

2�(d&1)

where deld&1 is a constant that is connected with triangulations. In [5]
and [6], it was shown constructively that for all dimensions d, all convex
bodies K, and all n�2 there is a polytope Pn with n vertices that is
contained in K such that

vold (K)&vold (Pn)�c1 d vold (K) n&2�(d&1)

where c1 is a numerical constant. This estimate can also be derived from
[1] and [2, 3]. So the question was whether the factor d was necessary, or,
in other words, what is the order of magnitude of the constant deld . The
result in this paper shows that there are absolute positive constants c1 and
c2 with

c1�deld�c2 .

10 GORDON, REISNER, AND SCHU� TT
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In fact, we have

deld&1�
32
7 \ vold&1(�Bd

2)
vold&1(Bd&1

2 )+
2�(d&1)

this follows from estimate (1) below.
In this paper we want to show that there is a universal constant c>0

such that the volume of the difference set of the d-dimensional Euclidean
ball and an inscribed polytope with n vertices is larger than

c d vold (Bd
2) n&2�(d&1).

We want to reduce the computation of the volume of the difference set
to that of the following set: The set between a d&1-dimensional face of
the polytope and the boundary of the sphere. Intuitively it is clear that
the faces should be simplices and that the polytope should have rather
regular features. This leads us to the assumption that the volume of the
set between a d&1-dimensional face of the polytope and the boundary of
the sphere equals in average approximately the surface area of the face
times the height of the cap of the Euclidean ball that is determined by
that face.

There are two technical difficulties. The number of faces does not
necessarily correspond to the number of vertices. In fact, a heuristic
argument shows that the number of faces is of the order of the number of
vertices times d d�2. Secondly, although we may assume that the faces are
simplices, we may not assume that they are regular or close to regular. This
is expressed in the following way. If F is a face and H the hyperplane
containing F then the distance of the centers of gravity of F and H & Bd

2

may be large.
Hyperplanes are usually denoted by H and the closed halfspaces associated

with H by H+ and H&. H(x, !) is the hyperplane that passes through x
and is orthogonal to !.

The d&1-dimensional faces of a polytope in Rd are denoted by Fj . The
hyperplanes containing Fj are denoted by Hj . H +

j denotes the halfspace
containing P.

For a polytope P that is contained in Bd
2 the height or width of Bd

2 & H &
j

is hj and the radius of Bd
2 & Hj is rj .

cg(M) is the center of gravity of the set M.
[A, B] denotes the convex hull of the sets A and B. The radial projection

rp(M) of a set M in Bd
2 is

rp(M)=[! # �Bd
2 | [0, !] & M{<].

11UMBRELLAS AND THE EUCLIDEAN BALL
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Theorem 1. There are two positive constants c1 and c2 so that we have
for all d, d�2, and all n, n�(c2 d )(d&1)�2, and all polytopes Pn that are
contained in the Euclidean unit ball Bd

2 and have n vertices

vold (Bd
2)&vold (Pn)�c1 d vold (Bd

2) n&2�(d&1).

In particular we have by Theorem 1 that

vold (Bd
2)&vold (Pn)�

c1

c2

vold (Bd
2)

if n�(c2 d )(d&1)�2.

Lemma 2. (i) For all x, 0<x, there is a %, 0<%<1, such that

1(x+1)=- 2? xx+1�2 exp \&x+
%

12x+ .

(ii) vold (Bd
2)=

?d�2

1((d�2)+1)
�

?(d&1)�2(2e)d�2

d (d+1)�2 .

The following lemma is due to Bronshtein and Ivanov [1] and Dudley
[2, 3].

Lemma 3. For all dimensions d, d�2, and all natural numbers n, n�2d,
there is a polytope Qn that has n vertices and is contained in the Euclidean
ball Bd

2 such that

dH(Qn , Bd
2)�

16
7 \ vold&1(�Bd

2)
vold&1(Bd&1

2 )+
2�(d&1)

n&2�(d&1).

In particular, since a Qn which satisfies the hypothesis of Lemma 3
contains the Euclidean ball of radius 1&dH(Qn , Bd

2), it follows that

dS(Qn , Bd
2)�vold (Bd

2)[1&(1&dH(Qn , Bd
2))d]

�vold (Bd
2) {1&\1&

16
7 \ vold&1(�Bd

2)
vold&1(Bd&1

2 )+
2�(d&1)

n&2�(d&1)+
d

=
(1)

and

{1&
16
7 \ vold&1(�Bd

2)
vold&1(Bd&1

2 )+
2�(d&1)

n&2�(d&1)=
d&1

vold&1(�Bd
2)�vold&1(�Qn).

(2)

12 GORDON, REISNER, AND SCHU� TT
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We have that

vold&1(�Bd
2)=d vold (Bd

2)=d
?d�2

1((d�2)+1)

=d - ?
1((d&1)�2+1)

1((d�2)+1)
vold&1(Bd&1

2 )

�d - ? vold&1(Bd&1
2 ).

Since d 2�(d&1)�4 and (1&t)d�1&dt we get from (1)

dS(Qn , Bd
2)�(1&(1& 64

7 ?n&2�(d&1))d ) vold (Bd
2)

� 64
7 ? dn&2�(d&1) vold (Bd

2). (3)

Similarly we get from (2) that we have for n�( 128
7 ? d )(d&1)�2.

vold&1(�Bd
2)�2 vold&1(�Qn). (4)

For the sake of completeness we include the proof of Lemma 3. The
arguments are from [1].

Proof. For every n there is a %n>0 and a set [x1 , ..., xn]/�Bd
2 so that

for all i{ j we have

&xi&xj &�%n

and so that for every x # �Bd
2 there is i such that

&x&xi &�%n .

We choose Qn to be the convex hull of [x1 , ..., xn]. We have

dH(Qn , Bd
2)� 1

2%2
n .

If not, then there is x # �Bd
2 such that the Euclidean ball with radius 1

2%2
n

and center x and Qn have an empty intersection. By the theorem of
Hahn�Banach there is a hyperplane separating Qn and Bd

2(x, 1
2 %2

n). This
hyperplane cuts off a cap of height greater than 1

2%2
n . The point at the top

of this cap has a distance greater than %n from all xi , i=1, ..., n. This can-
not be.

Now we estimate %n from above. The caps

�Bd
2 & H & ((1& 1

8 %2
n) xi , xi) i=1, ..., n

13UMBRELLAS AND THE EUCLIDEAN BALL
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have disjoint interiors. Therefore we get

vold&1(�Bd
2)� :

n

i=1

vold&1 (�Bd
2 & H&((1& 1

8%2
n) xi , xi ))

�n( 1
2 %n - 1& 1

16%2
n)d&1 vold&1(Bd&1

2 ).

We obtain

1
2

%n �1&
1

16
%2

n�\1
n

vold&1(�Bd
2)

vold&1(Bd&1
2 )+

1�(d&1)

For n=2d we get that %n�- 2. Indeed, just consider the set [e1 , ..., ed ,
&e1 , ..., &ed]. Thus it follows

%n

2 �7
8

�\1
n

vold&1(�Bd
2)

vold&1(Bd&1
2 )+

1�(d&1)

and thus

1
2

%2
n�

16
7 \1

n
vold&1(�Bd

2)
vold&1(Bd&1

2 )+
2�(d&1)

. K

Lemma 4. (i) For k=0, 1, 2, . . . and d=1, 2, . . . we have

|
R

d
+
\ :

d

i=1

yi+
k

exp \&\ :
d

i=1

yi+
2

+ dy=
1((k+1)�2)

2(d&1)!
.

(ii) |
R

d
+
\ :

d

i=1

y2
i + exp \&\ :

d

i=1

yi+
2

+ dy=
d 2

2(d+1)!
1 \d

2+ .

(iii) For i{ j we have

|
R

d
+

yiyj exp \&\ :
d

i=1

yi+
2

+ dy=
1(d�2)

4(d+1)(d&1)!
.

Proof. This is an easy consequence of Fubini theorem with the change
of variables xd=�d

i=1 yi and xi= yi , i=1, ..., d&1. K

For the following lemma compare also [12].

Lemma 5. Let x1 , ..., xd be points on the Euclidean sphere of radius 1, S
the simplex [x1 , ..., xd], and rp(S) the radial projection of S, i.e., the

14 GORDON, REISNER, AND SCHU� TT
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spherical simplex of the points x1 , ..., xd . Let X be the matrix whose columns
are the vectors x1 , ..., xd . Then we have

vold&1(rp(S))=
2

1(d�2)
|det(X)| |

R
d
+

exp(& ytXtXy) dy

and

vold ([0, rp(S)])=
1

1((d�2)+1)
|det(X)| |

R
d
+

exp(& ytXtXy) dy.

Proof. We have

vold (Bd
2)=

?d�2

1((d�2)+1)

and

|
Rd

e&&z&2 dz=?d�2.

Therefore we get

vold ([0, rp(S)])=
1

1((d�2)+1) |[z=t! | ! # S and t # R+]
e&&z&2 dz.

Using the substitution z=Xy we get the latter expression equals

1
1((d�2)+1)

|det(X)| |
R

d
+

e&ytXtXy dy. K

Lemma 6. Let x1 , ..., xd be points on the Euclidean sphere of radius 1, S
the simplex [x1 , ..., xd], and let rp(S) be the radial projection of the simplex
S. Let H be the hyperplane containing the simplex [x1 , ..., xd] and r the
radius of the d&1-dimensional Euclidean ball H & Bd

2 . Then we have

vold ([0, rp(S)])&vold ([0, S])�
d 2

2(d+1) \1&"1
d

:
d

i=1

xi"
2

+ vold ([0, S])

and

vold ([0, rp(S)])&vold ([0, S])�
d - 1&r2

2(d+1) \1&"1
d

:
d

i=1

xi"
2

+ vold&1(S).

15UMBRELLAS AND THE EUCLIDEAN BALL
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Proof. By Lemma 5 we have

vold ([0, rp(S)])&vold ([0, S])

=
1

1((d�2)+1)
|det(X)| |

R
d
+

exp(& ytXtXy) dy&
|det(X)|

d!
.

By Lemma 4(i) with k=0 the last expression equals

1
1((d�2)+1)

|det(X)| |
R

d
+
{exp(& ytXtXy)&exp \&\ :

d

i=1

yi+
2

+= dy

=
1

1((d�2)+1)
|det(X)|

_|
R

d
+
{exp \\ :

d

i=1

yi+
2

& ytXtXy+&1= exp \&\ :
d

i=1

yi+
2

+ dy.

We use now the inequality 1+t�et and get that the above expression is
greater than or equal to

1
1((d�2)+1)

|det(X)| |
R

d
+
{\ :

d

i=1

yi+
2

& ytX tXy= exp \&\ :
d

i=1

yi+
2

+ dy

=
1

1((d�2)+1)
|det(X)| :

d

i, j=1

(1&(xi , xj) ) |
R

d
+

yiyj exp(&( yty)2) dy.

Since we have (xi , xi)=1 for i=1, ..., d, we get by Lemma 4(iii) for the
above expression

=
1

1((d�2)+1)
|det(X)| :

d

i, j=1

(1&(xi , xj) )
1(d�2)

4(d+1)(d&1)!

=
1

2(d+1)!
|det(X)| \d 2&" :

d

i=1

xi"
2

+
=

d - 1&r2

2(d+1) \1&"1
d

:
d

i=1

xi"
2

+ vold&1(S). K

Lemma 7. Let A be a measurable subset of Bd
2 such that the center of

gravity of A is contained in a cap of height 2, 2�1. Then there is a cap C
of height 22 so that

2 vold (C & A)�vold (A).

16 GORDON, REISNER, AND SCHU� TT
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Proof. Let us consider Bd
2 with the origin situated at the ``south pole'',

i.e. Bd
2=[x=(!1 , ..., !d) | �d&1

i=1 !2
i +(!d&1)2�1]. W.l.g. assume that the

center of gravity of the set A is on the !d axis at the point (0, ..., 0, 2)
where 0<2�1. Let a(t) be the d&1-dimensional Lebesgue measure of the
intersection of A with the hyperplane [x | !d=t]. Then vold (A)=�2

0 a(t) dt
and 2=(1�vold (A)) �2

0 ta(t) dt. Let C be the cap Bd
2 & [x | !d�22]. We

obtain

2vold (C & A)=2 |
t<22

a(t) dt

=2vold (A)&2 |
t�22

a(t) dt

�2vold (A)&|
t�22

t
2

a(t) dt&|
t<22

t
2

a(t) dt

=vold (A). K

Lemma 8. Let Pn be a simplicial polytope with vertices x1 , ..., xn that are
elements of �Bd

2 . Let Fj , j=1, ..., m be the d&1-dimensional faces of Pn , Hj

the hyperplane containing Fj , hj the height of the cap Bd
2 & H &

j , and rj the
radius of Bd

2 & Hj . Let N be the set of integers j so that

hj�
1
8 \

vold&1(�Pn)
vold&1(�Bd

2)
1

4n+
2�(d&1)

.

Then we have

vold&1 \ .
j # N

Fj+�
1
4

vold&1(�Pn).

Proof. We put

Ni=[ j # N | xi # Fj] i=1, ..., n

and

\=
1
8 \

vold&1(�Pn)
vold&1(�Bd

2)
1

4n+
2�(d&1)

.

17UMBRELLAS AND THE EUCLIDEAN BALL
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Since hj�\ we have that �j # Ni Fj is contained in Bd
2(xi , 2 - 2\). � j # Ni Fj

is a subset of the boundary of the convex set Pn & Bd
2(xi , 2 - 2\). Thus we

get

vold&1 \ .
j # Ni

Fj+�vold&1(�(Pn & Bd
2(xi , 2 - 2\))).

Since Pn & Bd
2(xi , 2 - 2\) is a convex subset of the convex set Bd

2(xi , 2 - 2\)
we get

vold&1 \ .
j # Ni

Fj+�(8\)(d&1)�2 vold&1(�Bd
2)�

1
4n

vold&1(�Pn).

Therefore we get

vold&1 \ .
j # N

Fj +=vold&1 \.
n

i=1

.
j # Ni

Fj+
� :

n

i=1

vold&1 \ .
j # Ni

Fj+�
1
4

vold&1(�Pn). K

Lemma 9. Let Pn be a simplicial polytope with vertices x1 , ..., xn that are
elements of �Bd

2 . Let Fj , j=1, ..., m be the d&1-dimensional faces of Pn , Hj

the hyperplane containing Fj , hj the height of the cap Bd
2 & H &

j , and rj the
radius of Bd

2 & Hj . Assume that we have for all j, j=1, ..., m

hj�
16
7 \2

vold&1(�Bd
2)

vold&1(Bd&1
2 )+

2�(d&1)

n&2�(d&1)

and assume that

vold&1(�Bd
2)�2 vold&1(�Pn).

Let M be the set of integers j so that

&cg(Fj)&cg(Hj & Bd
2)&�

222&1
222 rj .

Then we have

vold&1 \ .
j # M

Fj +�
1
4

vold&1(�Pn).

18 GORDON, REISNER, AND SCHU� TT
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Proof. We put

%=
16
7 \2

vold&1(�Bd
2)

vold&1(Bd&1
2 )+

2�(d&1)

n&2�(d&1)

�
16
7

(2d - ?)2�(d&1) n&2�(d&1).

Since kj�% we have for all j, j=1, ..., m

rj�- 2%.

We have that cg(Fj) is contained in a cap of height 2&22rj of the d&1-
dimensional Euclidean ball Hj & Bd

2 . By Lemma 7 there is a subset F� j of Fj

so that F� j is contained in a cap of height 2&21rj and

vold&1(Fj)�2 vold&1(F� j).

Thus the diameter of F� j is less than 2&9rj�- 2%�512. The set of all integers
j such that xi # F� j is denoted by Mi . We have that �j # Mi F� j is a subset of

the boundary of the convex set Pn & Bd
2(xi , 2&9

- 2%) and has a smaller
surface area than Bd

2(xi , 2&9
- 2%).

vold&1 \ .
j # Mi

F� j+�\- 2%
512 +

d&1

vold&1(�Bd
2)

�
4d - ?

n \ - 32

512 - 7+
d&1

vold&1(�Pn).

Since d�2d&1 we get that the latter expression is smaller than

4 - ?
n \- 2

128+
d&1

vold&1(�Pn)�
- 2?
32n

vold&1(�Pn)�
1

8n
vold&1(�Pn).

Therefore we get

vold&1 \ .
j # M

Fn+=vold&1 \.
n

i=1

.
j # Mi

Fj+� :
n

i=1

vold&1 \ .
j # Mi

Fj+
�2 :

n

i=1

vold&1 \ .
j # Mi

F� j+�
1
4

vold&1(�Pn). K

19UMBRELLAS AND THE EUCLIDEAN BALL
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Proof of Theorem 1. We consider numbers of vertices n such that
n�( 512

7 ?d )(d&1)�2. Let Pn be a polytope with n vertices so that vold (Bd
2)&

vold (Pn) is minimal. Let Qn be a polytope with n vertices so that
dH(Bd

2 , Qn) is minimal. By Lemma 3 we have that for all j

dH(Bd
2 , Qn)�

16
7 \ vold&1(�Bd

2)
vold&1(Bd&1

2 )+
2�(d&1)

n&2�(d&1).

We consider now the convex hull of Pn and Qn .

P=[Pn , Qn].

P has at most 2n vertices. Its d&1-dimensional faces are denoted by Fj ,
j=1, ..., m. Hj is the hyperplane containing Fj , hj the height of the cap
Bd

2 & H &
j , and rj the radius of Bd

2 & Hj . We may assume that P is
simplicial. We have that

hj�dH(Bd
2 , Qn)�

16
7 \ vold&1(�Bd

2)
vold&1(Bd&1

2 )+
2�(d&1)

n&2�(d&1).

By the assumption on n we have that

hj�
1
8 and rj=- 2hj&h2

j � 1
2. (5)

Also we have by (4) that

vold&1(�Bd
2)�2 vold&1(�Qn)�2 vold&1(�P).

We apply Lemmas 8 and 9 to P that has at most 2n vertices. Thus a factor
2 enters the estimates. Let L be the set of integers j so that

1
8 \

vold&1(�Pn)
vold&1(�Bd

2)
1

8n+
2�(d&1)

�hj�
16
7 \ vold&1(�Bd

2)
vol&1(Bd&1

2 )
1
n+

2�(d&1)

(6)

and

&cg(Fj)&cg(Hj & Bd
2)&<

222&1
222 rj . (7)

We have

vold&1 \ .
j # L

Fj+�
1
2

vold&1(�P). (8)
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We apply Lemma 6

vold (Bd
2)&vold (Pn)�vold (Bd

2)&vold (P)

� :
j # L

(vold ([0, rp(Fj)])&vold ([0, Fj]))

� :
j # L

- 1&r2
j

4
(1&&cg(Fj)&2) vold&1(Fj).

By (5) we have rj�
1
2 and get that the latter expression is greater than

:
j # L

1
8

(1&&cg(Fj)&2) vold&1(Fj).

We have

&cg(Fj)&2=(1&hj)
2+&cg(Fj)&cg(Hj & Bd

2)&2.

By (7) we get for j # L

1&&cg(Fj)&2�1&(1&hj)
2&\222&1

222 rj+
2

=1&(1&hj)
2&\222&1

222 +
2

(2hj&h2
j )

=(2&21&2&44)(2hj&h2
j )�2&21hj .

Therefore

vold (Bd
2)&vol(P)�

1
224 :

j # L

hj vold&1(Fj).

By (6) we get that this expression is greater than

1
227 \ vold&1(�P)

vold&1(�Bd
2)

1
8n+

2�(d&1)

:
j # L

vold&1(Fj),

and by (8) this expression is greater than

1
229 \ vold&1(�P)

vold&1(�Bd
2)

1
8n+

2�(d&1)

vold&1(�P)

�
1

236 vold&1(�Bd
2) n&2�(d&1)=

1
236 d vold (Bd

2) n&2�(d&1). K
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